Assessment of Sidi Abed mountain flora richness through endemic, rare and threatened species in Tiaret, Algeria

Agrarian Academic Journal

doi: 10.32406/v6n4/2023/55-66/agrariacad


Assessment of Sidi Abed mountain flora richness through endemic, rare and threatened species in Tiaret, Algeria. Avaliação da biodiversidade da flora montanhosa de Sidi Abed através de espécies endêmicas, raras e ameaçadas em Tiaret, Argélia.


Benchohra Maamar1*, Hicham Berrabah2, Belgacem Nouar3, Hocine Fadlallah Rabah4


1*- University of Tiaret. Algeria. E-mail:
2- University Center of Mila. E-mail:
3- University of Tlemcen. Algeria. E-mail:
4- University of Tissemsilt, Algeria. E-mail:




To present day, no study has been carried out on the local flora of the Sidi Abed Mountain. Situated southern the city of Tiaret considered as natural barrier before steppe area. Phyto-ecological surveys with 100 m2 Braun-Blanquet minimum area were conducted 75 species, belonging to 29 families and 66 genera has been established. Asteraceae (20%), Fabaceae (10.7), Poaceae (10.7), Lamiaceae (6.7%), Apiaceae (5.3%) and Asparagaceae (5.3) were the most representative families covering more than 50% of the inventoried families. Moreover, Therophytes (48%) are majorly dominant with a notable decrease of the phanerophytes (5,3%) and increase of Hemicryptophytes (22.7%). Predominance of the Mediterranean biogeographic type species with a percentage of (41.3%) followed by the Euro-Mediterranean (10.7%) and West-Mediterranean (10.7%) typical for Mediterranean semi-arid climate. 2 endemic species were present and rarity reached 9% combined of rare (4%) and quite rare (5%). Among the taxa analyzed, 8 are included in the International Union for Conservation of Nature red list with different status and 2 are on the Algerian list of protected non-cultivated species.

Keywords: Floristic diversity. Biogeography. Endemic. Rare. Protected species.





Até hoje, nenhum estudo foi realizado sobre a flora local da montanha Sidi Abed. Situada ao sul da cidade de Tiaret, considerada uma barreira natural antes da área de estepe. Levantamentos fitoecológicos com área mínima de 100 m2 Braun-Blanquet foram realizados 75 espécies, pertencentes a 29 famílias e 66 gêneros foram estabelecidos. Asteraceae (20%), Fabaceae (10,7), Poaceae (10,7), Lamiaceae (6,7%), Apiaceae (5,3%) e Asparagaceae (5,3) foram as famílias mais representativas, abrangendo mais de 50% das famílias inventariadas. Além disso, os Terófitos (48%) são majoritariamente dominantes, com uma notável diminuição dos fanerófitos (5,3%) e aumento dos Hemicriptófitos (22,7%). Predominância das espécies do tipo biogeográfico Mediterrâneo com uma percentagem de (41,3%) seguida da Euro-Mediterrâneo (10,7%) e Mediterrâneo Ocidental (10,7%) típicos do clima semiárido mediterrâneo. 2 espécies endêmicas estavam presentes e a raridade atingiu 9% combinada de raras (4%) e bastante raras (5%). Dentre os táxons analisados, 8 estão incluídos na lista vermelha da União Internacional para a Conservação da Natureza com status diferenciado e 2 estão na lista argelina de espécies não cultivadas protegidas.

Palavras-chave: Diversidade florística. Biogeografia. Endêmico. Raro. Espécies protegidas.





Preserving and developing the diversity of a country’s plant genetic resources requires, above all, precise knowledge of this heritage. Given the complexity of the constantly evolving flora, the definition of an optimal strategy giving all the means to the operator would constitute a guarantee to achieve this objective (CHEMLI, 1997).

In a global context of preserving biodiversity, the study of the flora of the Mediterranean basin, presents a great interest, given its great richness linked to the heterogeneity of historical, paleogeographic, paleoclimatic factors, ecological and geological which characterize it, as well as the secular impact of anthropogenic pressure (QUÉZEL et al., 1980).

The Mediterranean Basin is described as one the biodiversity 34 hot spots and one of the richest regions in terms of biodiversity (MYERS, 2003; BLONDEL et al., 2010). Estimated at 25,000 species or 30,000 species and subspecies, the floristic richness of the Mediterranean region is equivalent to approximately 10% of the world’s higher plants present on only 1.6% of the earth’s surface (MÉDAIL; QUÉZEL, 1997).

Algeria as an integral part (CHEMOURI et al., 2015) has a great floristic specific richness of worldwide interest (BENABADJI et al., 2007) with 3139 species (MANSOURI et al., 2018) and high rate of endemism (MIARA et al., 2018a) with more than 300 endemic taxa (YAHI et al., 2012).

Many authors stated that conservation and enhancement of biodiversity could be done only by knowing its characteristics (BOUNAR et al., 2018). Conservation requires precise knowledge to prevent more biodiversity loss (AMIROUCHE; MISSET, 2009; CHEMLI, 1997), especially in transition zones separating pre-forest and high steppe which are still poorly exploited (YAHI et al., 2012).

The management of common forests, especially in arid and semi-arid ranges in Algeria, is gone up against with a need of information to get it how these biological systems work in terms of floristic composition, statistic structure, and recovery. Subsequently, creating maintainable administration methodologies remains exceptionally troublesome (GODOY, 1992). Several authors highlight the importance of these zones due to their panoply of rare and endemic species suffering from severe anthropogenic threats (NOUAR, 2015; MIARA et al., 2017; AZZAOUI et al., 2018; MAAMAR et al., 2018; NOUAR et al., 2020; NOUAR et al., 2021).

Through this contribution, we aim to inventory, identify and enhance the plant species of the Sidi Abed region. Furthermore, rank them systematically, biologically and biogeographically shading lights on the threatened and protected species of the area.


Materials and methods


Square Mountain or Djbel Sidi Abed, located south of the town of Tiaret (Figure 1). Algeria, on the road to Sougueur, a small isolated mountain on the Sers plateau rises to more than 1180 m with semi-arid to cool winter. It is home to a pure stand resulting from reforestation with Aleppo pine on limestone (MIARA et al., 2018b), considered as the last stop before entering steppe ecosystem. Therefore, it was necessary to determine the floristic characterization in order to preserve it from diminishing.


Figure 1 – Study area localization


Sigmatist phytosociological method was followed (BRAUN-BLANQUET et al., 1952) for sampling, this method consists in determining the smallest area called “minimal area” which accounts for the nature of the plant association.

Some authors had calculated the minimal areas of ​​64 m². It is 100m² or 200m² in the south of the northern Sahara. For our study, it was difficult to make a totally rigorous choice and, in order to remove any ambiguity and, to be able to compare the records; we deliberately chose to make 100m² plots (BENABADJI et al., 2001).

Floristic surveys were carried out from March to June 2017; this period is considered optimal for the observation of vegetation. Each vegetation survey consists of an exhaustive inventory of all the plant species encountered according to the strata, and each specie is accompanied by two indices: abundance-dominance and sociability.

The identification of taxa was made using the flora of (QUÉZEL; SANTA, 1962), scientific names of the species and their families are updated according to (DOBIGNARD; CHATELAIN, 2013, 2012, 2011, 2010).


Results and discussion


Systematic analysis


The inventoried flora is about 75 species, 66 genera and 29 families (Table 1), the distribution of these families is heterogeneous, with the dominance of the Asteraceae numbering 15 species (20%), followed by the Fabaceae and the Poaceae with the same percentage 08 species (10.7%), the Lamiaceae 05 species (6.7%), the Apiaceae, Asparagaceae with 04 species (5.3%) and the Geraniaceae 03 species either (4%).


Table 1 – List of inventoried species in the study area.
Protection status
Ammoides pusilla (Brot.) Breistr. = A. verticillata (Desf.) Briq
Eryngium triquetrum. Vahl
Ferula lutea (Poiret) Maire = Ferulago lutea (Poir.) Grande
Scandix pecten-veneris L.
Asparagus acutifolius L.
Asparagus horridus L.
Muscari neglectum Guss.
Ornithogalum baeticum Boiss.
Chamaerops humilis L
Anacyclus clavatus  (Desf.) Pers
Anacyclus pyrethrum (L.) Link
Artemisia herba-alba Asso
Atractylis humilis subsp caespitosa (Desf.)  M.
Bellis sylvestris L.
Calendula arvensis (Vaill.) L.
Carthamus pinnatus Desf.
Catananche caerulea L.
Galactites duriaei Spach
Helminthotheca echioides (L.) Holub
Hyoseris radiata L.
Hyoseris scabra L.
Onopordum macracanthum Schousb.
Pallenis spinosa (L.) Cass. subsp. spinosa
Reichardia picroides (L.)  Roth = Picridium  vulgare  L.
Echium plalltagineum  L.
Alyssum alpestre L.
Eruca vesicaria L
Paronychia argentea Lam.
Silene coelirosa (L.) Godr
Fumana thymifolia (L.)  .  Verlot
Convolvulus  cantabrica L.
Cupressus sempervirens L
Carex halleriana  Asso.
Anthyllis vulneraria subsp. maura (Beck) Maire
Bituminaria bituminosa (L.) C.H.Stirt. =  Psoralea bituminosa L
Hedysarum boveanum Bunge ex Basiner subsp. boveanum
Hedysarum flexuosum L.
Hedysarum pallidum Desf.
Lotus ornithopodioides L.
Scorpiurus muricatus. subsp sulcatus (L.)  TheIl.
Trifolium stellatum L.
Erodium cicutarium L’Her.
Erodium malachoides(L.) L’Hér
Erodium moschatum (Burm.)  L’Her.
Moraea sisyrinchium (L.) Ker Gawl
Phlomis crinita. subsp mauritanica (Munby) Murb.
Salvia verbenaca  (L.)  Briq.
Teucrium pseudochamaepitys  L.
Teucrium polium L. subsp. polium
Thymus ciliatus (Desf.) Benth. subsp. ciliatus
Malva sylvestris L.
Anacamptis papilionacea (L.) R. M. Bateman, Pridgeon & M. W. Chase
Parentucellia latifolia (L.)  Caruel
Fumaria officinalis L.
Papaver hybridum L.
Pinus halepensis Mill.
Plantago coronopus  L. subsp.  coronopus
Plantago lagopus L.
Avena barbata Pott ex Link
Bromus madritensis L=  Anisantha madritensis  (L.) Nevski
Dactylis glomerata L.
Echinaria capitata (L.)  Desf.
Hordeum murinum subsp. leporinum (Link) Arcang
Lygeum spartum L.
Macrochloa tenacissima (L.) Kunth = Stipa tenacissima L
Phleum pratense subsp. bertolonii (DC.) Bornm
Lysimachia arvensis (L.) U. Manns & Anderb. = Anagallis arvensis  L
Adonis annua L. subsp. Annua = A. annua subsp. autumnalis (L) Maire & Weiller
Reseda alba L. subsp. alba
Rhamnus lycioides. subsp. oleoides L.
Ziziphus lotus (L.)  Desf.
Asperula hirsuta Desf.
Galium valantia F. H. Wigg
Thymelaea hirsuta Endl.
Valerianella discoidea (L.) Loisel = V. coronata subsp. discoidea
LC: lest concern; NT: near threatened; VU: vulnerable; P: protected.


The families of Brassicaceae, Caryophylaceae, Papaveraceae, Plantaginaceae, Rahmnaceae and Rubiaceae present by 02 species each (2.7%), the rest of the families (16) are mono-generic (single species) with a very small percentage (1.3% each, i.e., 21.3% in total) (Figure 2).

Overall, the high proportion of the contribution of the three families of Asteraceae, Fabaceae and Poaceae is the same that emerges in the work of (DJEBBOURI; TERRAS, 2019; MEDJAHDI et al., 2009; NOUAR et al., 2020; YOUCEFI et al., 2020).


Figure 2 – Composition of the flora by family


Biological types distribution


The biological spectra were determined from the Raunkiaer classification (RAUNKIAER, 1934). Figure 3 shows the distribution of these spectra and their percentages.


Figure 3 – Composition of the flora by biological types


According to Figure 3, the distribution of the biological types of flora is as follows: TH > HE > GE = CH > PH.

By analyzing the figure above, we observe that Therophytes (TH) have the highest rate (48%) with 36 species where the most abundant are: Calendula arvensis, Anacyclus cIavatus, Eruca vesicaria, Eruca vesicaria, Trifolium stellatum, Erodium moschatum, Teucrium pseudochamaepitys… etc. This important distribution is a form of resistance to drought and to high temperatures in arid environments coupled with the intense anthropozogenic action (BABALI, 2014; BOUGHANI et al., 2009; DAGER, 1980).

Moreover, Hemicryptophytes (HE) play a particularly important role and occupy the second position with 17 species (22.7%). These species include: Carduncellus pinnatus, Ferula lutea, Plantago coronopus… etc.; across Maghreb regions (BARBERO et al., 2001). Verlaque et al., (2001) report that the good success of this type is linked to strong diversification (biotope, altitude, dispersal, etc.). Whereas, Geophytes (Ge) (12%) are also present with 09 species, the most common are: Asparagus acutifolius, Asparagus horridus, Macrochloa tenacissima… etc. However, equally to the Geophytes (Ge), Chamaephytes (CH) are represented mainly by Chamaerops humilis, Artemisia herba-alba, Pallenis spinosa, Thymelaea hirsute… etc.

Ovine and bovine overgrazing leads to the development of Chamaephytes (LE HOUEROU, 1992). Their proportion increases as soon as pre-forest environments deteriorate, because this biological type adapts better to summer dryness and light than phanerophytes. However, Geophytes, are majorly rhizomatous taxa and have efficient sexual and vegetative reproduction, hence their better maintenance (VERLAQUE et al., 2001).

Finally, the very low percentage of Phanerophytes (PH) (05.3%) with 04 species, allowed us to confirm the degradation of the plant cover. This can be explained by the different degradation pressures that are occurring in the study area (overuse of wood, overgrazing and especially fires). For this purpose, several reforestation operations by foresters have been carried out using two main species: Aleppo pine (Pinus halepensis) and the evergreen cypress (Cupressus symperirens), where the main objective is the protection of natural vegetation.


Biogeographic types distribution


The analysis of the flora by biogeographic types shows the predominance of Mediterranean type species (Med) with (31 species; 41.3%) as confirmed by Miara et al. (2017). Followed by The West-Mediterranean elements (W. Med) and Euro-Mediterranean (Eur Med) with (08 species each; 10.7%), then Ibero-Mauritanian (Iber-Maur) with (05 species; 6.7%), Eurasian (Euras) (03 species; 4%), Cosmopolitan (Cosm) and European (Eur) (02 species: 2.7%), the rest of the types (16) represent low participation (only one specie 1,3%, 17.6% overall) (Figure 4). Two (02) endemic species: Hedysarum pallidum Desf (Endemic Algeria – Tunisia) and Thymus ciliatus (Desf.) Benth. subsp. Ciliatus (Endemic North Africa) were found. These findings contribute to the classification of Tiaret region as important plant area (IPA) (MIARA et al., 2017). Although the same author adds that several taxa cited in the bibliography for the region have not been found. which leaves one to wonder about the state of conservation and the existence of these taxa in an environment very strongly disturbed by devastating human action.


Figure 4 – Composition of the flora by Biogeographic types


Rarity status


Rarity percentages are figured in the figure 5 where the plants are classified with different status of abondance, from the extremely common to rare.


CCC: Extremely common; CC: Very common; AC: Quite common; C: common; AR: Quite rare; R: Rare
Figure 5 – Rarity status of the inventoried flora


Only one species of the orchidaceae family Anacamptis papilionacea (L.) RM Bateman, Pridgeon & MW Chase is reported, while two other species are observed by (MIARA et al., 2018b), it is Anacamptis collina (Banks & Sol. Ex Russell) RM Bateman, Pridgeon & MW Chas and Ophrys lutea Cavanilles subsp. Lutea who realized a specific research on orchids (MIARA et al., 2017) also signaled Crupina intermedia as endemic, in djebel sidi abed which unfortunately was not observed.


Protection status


Using the International Union for Conservation of Nature (IUCN) red list, several species with different status were determined, five species have a least concern status (Chamaerops humilis L (GARDINER; VÉLA, 2017); Cupressus sempervirens (L) (Farjon, 2013a); Pinus halepensis (L) (FARJON, 2013b); Bromus madritensis (L) (THACKER, 2013); Hordeum murinum subsp. leporinum (Link) Arcang (RHODES et al., 2016), one near threatened species Hedysarum flexuosum (L) (GROOM, 2012) with a decrease of population. Finally, two species are vulnerable and decreasing in population Anacyclus pyrethrum (L.) Link (RANKOU et al., 2017); Macrochloa tenacissima (L.) Kunth (CARAPETO; VÉLA, 2018). Locally, The Algerian legislation cited two species from our finding Teucrium polium L. subsp. Polium and Anacamptis papilionacea (L.) R. M. Bateman, Pridgeon & M. W. Chase protected under the Executive Decree No. 12–03, listing the non-crop protected plants (J.O.R.A.D.P, 2012).




The obtained results undoubtedly confirm that the studied vegetation tends towards the therophytization. Distribution percentages of other biological types in descending order; Hemicryptophytes (22.7%), Geophytes and Chamaephytes (12%) and Phanerophytes (05.3%). The poor representation of Phanerophytes indicates the advanced degradation of the vegetation cover by the reduction of forest formations and their replacement by degraded formations invaded by steppe species (Macrochloa tenacissima, Lygeum spartum and Artemisia herba-alba) and grassy herbs with short life cycles.

From a taxonomic point of view, the listed species are marked by the dominance of the Asteraceae family (20%), followed by Fabaceae and Poaceae (10.7%). At the Biogeographic level, the Mediterranean, West Mediterranean and Euro-Mediterranean strain species were the most answered in the study area with percentages of 41.3%, 10.7% and 10.7% respectively, while other strains were poorly represented (<07%).

Our findings highlight the importance of this mountain, due to the identified endemic and protected species, more attention and monitoring should be given to this region considered as transition zone between two ecosystems, forming a natural barrier against steppe advancement.


Interest conflicts


There was no conflict of interest of the authors.


Authors’ contribution


Maamar Benchohra – original idea, reading and interpretation of works and writing; Maamar Benchohra, Hichem Berrabah and Nouar Belgacem – writing and corrections; Hocine Fadlallah Rabah – guidance, corrections and revision of the text.


Bibliographic references


AMIROUCHE, R.; MISSET, M. T. Flore spontanée d’Algérie: Différenciation écogéographique des espèces et polyploïdie. Cahiers Agriculture, v. 18, n. 6, p. 474-480, 2009.

AZZAOUI, M.; MAAMAR, B.; SOUDANI, L.; NOUAR, B.; BERREYAH, M.; MAATOUG, M. Spatial dynamics of land cover in the Sdamas region (Tiaret, Algeria). Journal of Geology, Geography and Geoecology, v. 27, n. 1, p. 12-19, 2018.

BABALI, B. Contribution à une étude phytoecologique des Monts de Moutas (Tlemcen-Algérie occidentale): Aspects syntaxonomiques, biogéographique et dynamique. 197p. Thèse (Doctorat) –  Universite Aboubakr Belkaid, 2014.

BARBERO, M.; LOISEL, R.; MÉDAIL, F.; QUÉZEL, P. Signification biogéographique et biodiversité des forets du bassin méditerranéen. Bocconea, 13, p. 11-25, 2001.

BENABADJI, N.; BOUAZZA, M.; MAHBOUBI, A. L’impact de l’homme sur la forêt dans la région de Tlemcen (Oranie-Algérie). Forêt Méditerranéenne, XXII, n. 3, p. 269-274, 2001.

BENABADJI, N.; BENMANSOUR, D.; BOUAZZA, M. La flore des monts d’Ain Fezza dans l’ouest algerien, biodiversite et dynamique. Sciences & Technologie, n. 26, p. 47-59, 2007.

BLONDEL, J.; ARONSON, J.; BODIOU, J.-Y.; BOEUF, G. The Mediterranean Region: Biological Diversity in Space and Time. 2nd Edition. Oxford: Oxford University Press, 2010.

BOUGHANI, A.; SADKI, N.; MÉDAIL, F.; NEDJRAOUI, D.; SALAMANI, M. Analyse floristique et phytogéographique d’une région de l’Atlas saharien constantinois, les gorges du Ghouffi (Algérie). Acta Botanica Gallica, v. 156, 399-414, 2009.

BOUNAR, R.; NOUIDJEM, Y.; ARAR, A. Ecology and Floristic Diversity of Takoucht Massif Chain in Babors (Bejaia, Algeria). Entomology and Applied Science Letters, v. 5, n. 2, p. 26-35, 2018.

BRAUN-BLANQUET, J.; ROUSSINE, N.; NEGRE, R. Les groupements végétaux de la France méditerranéenne. Paris, CNRS, 1952, 298p.

CARAPETO, A.; VÉLA, E. Stipa tenacissima, Needle Grass. The IUCN Red List of Threatened Species. 2018.

CHEMLI, R. Plantes médicinales et aromatiques de la flore de Tunisie. In: HEYWOOD, V. H.; SKOULA, M. (Eds.). Identification of wild food and non-food plants of the Mediterranean region. Chania: CIHEAM, p. 119-125, 1997.

CHEMOURI, F. Z.; GHEZLAOUI-BENDI-DJELLOUL, B.-E.; BENABADJI, N. Floral Diversity of the Tlemcen Mountains (Western Algeria). Ecologia Balkanica, v. 7, n. 2, p. 1-11, 2015.

DAGET, P. Sur les types biologiques en tant que stratégie adaptative (cas des thérophytes). In: BARBAULT, R.; BLANDIN, P.; MEYER, J. A. (Eds.). Recherches d’écologie théorique, les stratégies adaptatives, Maloine, Paris, p. 89-114, 1980.

DJEBBOURI, M.; TERRAS, M. Floristic diversity with particular reference to endemic, rare or endangered flora in forest formations of Saïda (Algeria). International Journal of Environmental Studies, v. 76, n. 6, p. 990-1003, 2019.

DOBIGNARD, A.; CHATELAIN, C. Index synonymique de la flore d’Afrique du Nord. Dicotyledoneae  Oleaceae – Zygophyllaceae 5, 2013.

DOBIGNARD, A.; CHATELAIN, C. Index synonymique de la flore d’Afrique du Nord. Dicotyledoneae  Fabaceae – Nymphaeaceae 4, 2012.

DOBIGNARD, A.; CHATELAIN, C. Index synonymique de la flore d’Afrique du Nord. Dicotyledoneae Balsaminaceae – Euphorbiaceae, 2011.

DOBIGNARD, A.; CHATELAIN, C. Index synonymique de la flore d’Afrique du Nord. Pteridophyta, Gymnospermae, Monocotyledoneae 1, 2010.

FARJON, A. Cupressus sempervirens, Mediterranean cypress. The IUCN Red List of Threatened Species. 2013a.

FARJON, A. Pinus halepensis, Aleppo Pine. The IUCN Red List of Threatened Species. 2013b.

GARDINER, L.; VÉLA, E. Chamaerops humilis, Mediterranean Fan Palm. The IUCN Red List of Threatened Species. 2017.

GROOM, A. Hedysarum flexuosum. The IUCN Red List of Threatened Species. 2012.

J. O. R. A. D. P. Décret exécutif du 18 janvier 2012, complétant la liste des espèces végétales non cultivées et protégées. Journal Officiel de La Republique Algerienne Democratique et Populaire, 3-12/12, p. 12-38, 2012.

LE HOUEROU, H. N. Relations entre la variabilité des précipitations et celle des productions primaire et secondaire en zone aride. In: LE FLOC’H, E.; GROUZIS, M.; CORNET, A.; BILLE, J.-C. (Eds.). L’aridité: une contrainte au développement: caractérisation, réponses biologiques, stratégies des sociétés. Paris: ORSTOM, p. 197-220, 1992.

MAAMAR, B.; NOUAR, B.; SOUDANI, L.; MAATOUG, M.; AZZAOUI, M.; KHARYTONOV, M.; WICHE, O.; ZHUKOV, O. Biodiversity and dynamics of plant groups of Chebket El Melhassa region (Algeria). Biosystems Diversity, v. 26, n. 1, 62-70, 2018.

MANSOURI, S.; MIARA, M. D.; HADJADJ-AOUL, S. Etat des connaissances et conservation de flore endemique dans la region d’Oran (Algerie occidentale). Acta Botanica Malacitana, v. 43, p. 23-30, 2018.

MÉDAIL, F.; QUÉZEL, P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Annals of the Missouri Botanical Garden, n. 84, n. 1, p. 112-127, 1997.

MEDJAHDI, B.; TATTOU, M. I .B. N.; BARKAT, D.; BENABEDLI, K. La flore vasculaire des Monts des Trara (Nord Ouest Algérien). Acta Botanica Malacitana, v. 34, p. 57-75, 2009.

MIARA, M. D.; AIT HAMMOU, M.; HADJADJ-AOUL, S.; REBBAS, K.; BENDIF, H.; BOUNAR, R. Diversité floristique des milieux forestiers et préforestiers de l’Atlas tellien occidental de Tiaret (N-O Algérie). Evaxiana, v. 4, p. 34-58, 2017.é floristique des milieux forestiers et préforestiers de l’Atlas tellien occidental de Tiaret (N-O Algérie)

MIARA, M. D.; AIT HAMMOU, M.; DAHMANI, W.; NEGADI, M.; DJELLAOUI, A. Nouvelles données sur la flore endémique du sous-secteur de l’Atlas tellien Oranais “O3” (Algérie occidentale). Acta Botanica Malacitana, v. 43, p. 63-69, 2018a.

MIARA, M. D.; AIT HAMMOU, M.; REBBAS, K.; HADJADJ-AOUL, S.; VÉLA, E. Les Orchidées de la wilaya de Tiaret (Algérie nord-occidentale): inventaire, écologie, taxonomie et biogéographie. Bulletin mensuel de la Société linnéenne de Lyon, v. 87, n. 9/10, p. 273-293, 2018b.

MIARA, M. D.; AIT HAMMOU, M.; REBBAS, K. Flore endemique, rare et menacees de l’Atlas Tellien Occidental de Tiaret (Algerie). Acta Botanica Malacitana, v. 42, n. 2, p. 269-283, 2017.

MYERS, N. Biodiversity Hotspots Revisited. BioScience, v. 53, n. 10, p. 916-917, 2003.[0916:BHR]2.0.CO;2

NOUAR, B. Contribution à l’étude de la diversité floristique et biogéographique des matorrals selon un gradient altitudinal des monts de Tiaret (Algerie). 152p. Thèse (Magister) –  Universite AbouBakr Belkaid – Tlemcen, 2015.

NOUAR, B.; OKKACHA, H.; BENCHOHRA, M.; DJAMEL, M. M. Floristic diversity of the Tagdempt region, Tiaret Mountains, Algeria. Acta Ecologica Sinica, v. 40, n. 4, p. 296-299, 2020.  

NOUAR, B.; MAAMAR, B.; BERRABAH, H.; SOUDDI, M.; HASNAOUI, O.; NOUAR, A. Diversity and floristic composition of Djebel Nessara region (Tiaret – Algeria). Biodiversity Journal, v. 12, n. 3, p. 729-732, 2021.

QUÉZEL, P.; SANTA, S. Nouvelle flore de l’Algérie et des régions désertiques méridionales. Tome I. Editions du Centre National de la Recherche Scientifique, Paris. In: La Terre et La Vie, Revue d’Histoire naturelle, tome 16, n. 4, p. 459, 1962.

QUÉZEL, P. Biogeography and ecology of conifers on the Mediterranean rim. In. Person. Ecology news forestry. Paris: Ed. Bordas. 205-256, 1980.

RANKOU, H.; OUHAMMOU, A.; TALEB, M.; MANZANILLA, V.; MARTIN, G. Anacyclus pyrethrum, Atlas Daisy. The IUCN Red List of Threatened Species. 2017.

RAUNKIAER, C. The Life Forms of Plants and Statistical Plant Geography. London: Oxford Clarendon Press, 1934, 632p.

RHODES, L.; BRADLEY, I.; MAXTED, N. Hordeum murinum, False Barley. The IUCN Red List of Threatened Species. 2016.

THACKER, H. Bromus fasciculatus. The IUCN Red List of Threatened Species. 2013.

VERLAQUE, R.; MÉDAIL, F.; ABOUCAYA, A. Valeur prédictive des types biologiques pour la conservation de la flore méditerranéenne. Comptes Rendus l’Académie des Sciences – Series III – Sciences de la Vie, v. 324, n. 12, p. 1157-1165, 2001.

YAHI, N.; VELA, E.; BENHOUHOU, S.; DE BELAIR, G.; GHARZOULI, R. Identifying Important Plants Areas (Key Biodiversity Areas for Plants) in northern Algeria. Journal of Threatened Taxa, v. 4, n. 8, p. 2753-2765, 2012.

YOUCEFI, M. N.; BOUHOUN, M. D.; KEMASSI, A.; EL-HADJ, M. D. O. Relationship between topography and the distribution of matorral plant species in the Saharan Atlas: Case of Djebel Amour, Algeria. Acta Ecologica Sininica, v. 40, n. 3, p. 237-246, 2020.




Received on July 21, 2023

Returned for adjustments on September 25, 2023

Received with adjustments on September 27, 2023

Accepted on September 29, 2023